Schlagwort-Archive: Marsmission

Marsrover Curiosity 2000 Sols auf dem Mars

Der Marsrover Curiosity ist jetzt bereits über 2000 Sols (Marstage) auf dem Mars. Ein Marstag dauert 24 Stunden und 37 Minuten. Der Curiosity Rover ist der Rover in der Mars Science Laboratory (MSL) der NASA.

Die erfolgreiche Landung auf dem Mars gelang am 5. August 2012. Dabei wahr die Landung die Komplizierteste in der Geschichte der Forschung auf dem Mars und wahrscheinlich im ganzen Sonnensystem. Dabei wurde alles eingesetzt, was die NASA zum Bremsen einsetzen konnte. Zuerst wurde die Geschwindigkeit mit einem Hitzeschild reduziert. Dabei sank die Geschwindigkeit bis auf die 1,7 fache Schallgeschwindigkeit. Dort wurde dann der Überschallfallschirm betätigt und bremste weiter. Zum Schluss wurde dann noch der Fallschirm abgetrennt und mit Raketentriebwerke auf 0 Km/h abgebremst. Diese Raketentriebwerke sollten aber nicht zu viel Staub aufwirbeln, weil man fürchtete der Curiosity Rover könnte beschädigt werden. Deshalb entwickelte man den sogenannten Skycrane. Dieses System seilte den Rover das letzte Stück ab. Als der Rover dann auf der Marsoberfläche stand wurden die Seile gekappt und der Skycrane flog im 45 Grad Winkel von der Landestelle weg, um nicht auf den Rover zu stürzen, wenn der Treibstoff aufgebraucht ist, oder diesen mit aufgewirbelten Staub zu verschmutzen.

Hier könnt ihr euch die Beindruckende Landung noch einmal anschauen.

Was hat Curiosity in den 2000 Marstagen oder etwa 5,5 Erdjahren alles Erreicht?

Curiosity hat alle seine wissenschaftlichen Hauptziele bereits im ersten Jahr nach der Landung erreicht. Dabei ging es um den Nachweis das der Mars früher Leben beherbergen konnte. Hier wahr die geologische Zusammensetzung der Mineralien im Marsboden entscheidend. Curiosity konnte Mineralien Nachweisen, die sich nur bei längeren Einwirken von Wasser bilden. Zusätzlich fand man eine Stelle, die man für ein Flussbett hält. Auch konnten komplexe Kohlenstoffverbindungen nachgewiesen werden.

Curiosity ist die Erste Mission, die auch die Strahlenbelastung auf dem Mars analysiert. Diese Erkenntnisse sind wichtig für Zukünftige bemannte Raumflüge zum Mars. Die Messungen der Strahlenbelastung, bestätigen das man mit dem Strahlenbudget auskommt, welches die NASA ihren Astronauten maximal zumuten will. Bei einer bemannten Mission kann die Strahlenbelastung aber sicher durch Abschirmung noch weiter reduziert werden.

Die Strahlung während eines Sonnensturms 2017

Die Strahlung während eines Sonnensturms im November 2017 Quelle:NASA/GSFC/JPL-Caltech/Univ. of Colorado/SwRI-Boulder/UC Berkeley

Neben den Wissenschaftlichen gibt es noch technische Ziele. Hier wollte man erstmals Zeigen, dass man einen so schweren Rover erfolgreich Landen kann. Curiosity wiegt immerhin 940 Kg und damit 5 Mal mehr als seine Vorgänger Spirit und Opportunity
zweitens wollte die NASA zeigen, dass die Landung sehr präzise erfolgt. Durch ein kleineres Landegebiet kommen für den Nachfolger dann mehr Landegebiete infrage. Die Landung gelang sehr präzise.
Drittens wollte die NASA Curiosity 20 Km weit fahren. Dieses Ziel wurde erst vor einigen Tagen erreicht. Derzeit stehen 20271 Meter auf dem Tacho vom Curiosity Rover.

Wie geht es Jetzt weiter?
Der Rover hatte bis jetzt eine sehr erfolgreiche Mission auf dem Mars. Auch, wenn man die Hauptziele bereits erreicht hat, kann man mit dem Rover die geologischen Strukturen auf dem Mars noch weiter entschlüsseln und so manche Geheimnisse lüften. Dabei orientiert sich die NASA weiter an die Hauptfragen der Mission und versucht weiter unser Wissen über den Mars beständig zu Erweitern.

NASA Helikopter Drohne für den Mars

Die NASA will auf dem Flug des neuen Marsrovers 2020 eine unbemannte Flugdrohne mitfliegen lassen. Das Fluggerät soll nur 1,8 Kilogramm wiegen und 2,5 Minuten lang fliegen können. Dies ermöglicht es jeden Tag 300 Meter weite Strecken zurückzulegen, bevor die Akkus mit Solarzellen wieder aufgeladen werden müssen. Regelmäßig wären weitere Flüge möglich. Die aktuellen Marsrover schaffen derzeit maximal eine Fahrtstrecke um die 50 m pro Tag. So könnte die Flugdrohne aus der Luft interessante Objekte für den Rover vorab erkunden.

Drohne auf dem Mars

Künstlerische Darstellung der Flugdrohne auf dem Mars Quelle: NASA/JPL-Caltech

Diese Mission wäre eine Technologiedemonstration und würde der NASA eine völlig neue Möglichkeit geben den Mars zu Erforschen. Derzeit erforscht die NASA den Mars großflächig mit Sonden aus Umlaufbahnen die hunderte Kilometer über der Planeten Oberfläche sind und mit Rovern auf der Planetenoberfläche. Zwischen diesen beiden Bereichen gibt es aber noch eine Lücke und so arbeitet man schon länger an einen Plan diese zu schließen.

Lange Zeit gab es Pläne hierfür Ballonfahrzeuge einzusetzen, doch diese hatten große Nachteile. Einerseits wahren trotz riesiger Ballons, aufgrund der dünnen Marsatmosphäre nur kleine Nutzlasten möglich. Außerdem wäre der Ballon ungesteuert unterwegs und Forschung nicht gezielt möglich.

Trotz dieser Nachteile gab es schon länger Pläne eine Flugdrohne zum Mars zu schicken, doch die NASA beließ es dabei. Jetzt will man es mit einer Drohne, die einem Helikopter ähnelt und sich gezielt steuern lässt erneut Versuchen.

Diese Technologie ist heute für kurze Flugstrecken von wenigen hundert Metern auch auf dem Mars einsetzbar. Noch vor zehn Jahren wahr das nicht möglich, da man auf moderne Akkumulatoren mit hoher Leistung und Energiedichte angewiesen ist. Außerdem mussten erst Rotoren entwickelt werden, die mit den besonderen Anforderungen zurechtkommen, die auf dem Mars Vorherrschen. Hierzu gehört die sehr hohe Drehzahl um den geringen Luftdruck auf dem Mars, der den Druck auf der Erde in 30 km Höhe entspricht, zu kompensieren.

Sollte diese Mission erfolgreich sein wäre der Weg frei für die Entwicklung einer größeren Flugdrohne, die weiter Fliegen kann und mehr Nutzlast tragen kann. Kleinere Einheiten könnten als Begleiter für Rover und Lander zum Standard werden, um Gebiete schneller zu erkunden. Größere Drohnen könnten in Zukunft unwegsames Gelände Erforschen wie das Geologisch hoch interessante Valles Marineris.

Elon Musk, SpaceX und der Mars

Elon Musk hat auf der Technik Konferenz South by Southwest über seine Marspläne gesprochen. Unter anderen waren auch einige neue erstaunliche Fortschritte dabei. Elon Musk erzählte, das SpaceX bereits am ersten Raumschiff für den Marsflug arbeitet.

In der ersten Hälfte des nächsten Jahres soll das Raumschiff erstmals getestet werden. Dabei soll es zunächst kleine Testflüge auf der Erde absolvieren. Diese Testflüge werden zuerst an die Flüge des Grasshoppers erinnern. Mit dem Grasshopper hat SpaceX die Landung ihrer Falcon 9 Erststufen geübt, bis man dazu übergegangen ist die Landung nach Abtrennung der ersten Stufe bei normalen Starts der Falcon 9 zu üben.

Das Raumschiff ist Teil des BFR Systems und hat derzeit noch keinen richtigen Namen. BFR steht für Big Falcon Rocket. Im Jahr 2022 soll erstmals ein derartiges Raumschiff zum Mars fliegen.

Hierfür muss aber erst noch der Booster gebaut werden. Das gesamte BFR System soll mit einem neuen Methantriebwerk namens Raptor angetrieben werden. Dabei werden 31 in der Erststufe und 7 Raptor Triebwerke im Raumschiff eingesetzt, welches die zweite Stufe ist.

Das Raumschiff soll die Fähigkeit besitzen im Erdorbit an einem anderem Raumschiff anzudocken, um dort wieder aufgetankt zu werden. Dadurch kann SpaceX die Nutzlast des Raumschiffes zum Mars deutlich erhöhen. In die Erdumlaufbahn reicht die Nutzlast aber auch aus, um mit einer Frachtversion alle Satelliten zu starten.

BFR soll vollständig wiederverwendbar sein. Dadurch verspricht sich SpaceX deutlich geringere Startkosten als bei aktuellen Großraketen und will langfristig die Falcon 9 und die Falcon Heavy Starts durch die BFR ersetzen.

SpaceX Satelliteninternet Starlink gestartet

SpaceX hat beim letzten Flug ihrer Falcon 9 Rakete zwei Testsatelliten für das Satelliteninternet gestartet. Dieses System, welches einmal aus 12000 kleineren Satelliten bestehen soll, wird von SpaceX Starlink genannt.

Mit diesem System will SpaceX gerade in strukturschwachen Regionen den Zugang zum Internet deutlich verbessern. In einigen ärmeren Regionen würde sogar erstmals ein Internetzugang für die normale Bevölkerung geschaffen. Dadurch sollen 10 % des weltweiten Internets über die Satelliten von SpaceX laufen.

Starlink soll, wenn es einmal voll ausgebaut ist, die Kassen von SpaceX füllen. Etwa 30 bis 40 Milliarden US-Dollar Umsatz erhofft man sich jedes Jahr. Mit diesem Geld will SpaceX unter anderem seine Pläne für bemannte Flüge zum Mars Finanzieren.

Damit Starlink technisch wie ökonomisch erfolgreich sein kann, muss SpaceX die Flüge ins Weltall so günstig wie möglich durchführen. SpaceX setzt hierbei auf die hauseigene wiederverwendbare Falcon 9 Block 5 Rakete. Die Falcon 9 Block 5 soll bis zu 100 Mal wiederverwendet werden können, wenn sie alle 10 Flüge aufwendig gewartet wird.

Doch wie Wirtschaftlich ist das System?

Die Satelliten sollen in der Serienfertigung nicht mehr als eine Million US-Dollar pro Stück kosten. Die Startkosten sind nicht genau bekannt. SpaceX bietet den Start einer Falcon 9 Rakete für 60 Millionen Dollar an. Die wahren Kosten werden darunter liegen. Auch wird die Wiederverwendung bei der neuen Falcon 9 Block 5 Rakete vereinfacht und damit auch günstiger. Da die Satelliten relativ klein sind, können auf einen Flug 20 Satelliten in den niedrigen Erdorbit befördert werden.

600 Starts der Falcon 9 sind nötig um das System aufzubauen. Auch wenn die kosten bei hohen Stückzahlen normalerweise in allem Bereichen sinken, erreichen wir schon bei einem Preis von 60 Millionen Dollar pro Flug und 1 Millionen Dollar pro Satellit Gesamtkosten von nur 48 Milliarden Dollar.

Sollten die erwarteten Einnahmen realisiert werden können, wäre das System also nach eineinhalb Jahren refinanziert. Wenn die Satelliten im Mittel 10 Jahre halten sind zwischen 25 und 35 Milliarden Dollar Gewinn, abzüglich der Betriebskosten, möglich.

Heute Startet die Falcon Heavy Rakete Was ist geplant?

Der Falcon Heavy Start

Heute will SpaceX endlich seine Falcon Heavy Rakete starten. Doch wie ist der Start genau geplant?
Die Falcon Heavy soll gegen 19:30 von LC-39A abheben. Dabei sorgen 27 Merlin Triebwerke für einen Schub von 22800 kN. Die Zentrale Stufe wird kurz nach dem Start ihren Schub reduzieren um Treibstoff zu sparen. Dieser Treibstoff wird dann nach dem Abwurf der beiden Booster genutzt werden um die Rakete weiter zu beschleunigen.

Falcon Heavy auf dem Launchpad in Cape Caneveral

Falcon Heavy auf dem Launchpad Quelle: KennedySpaceCenter

Die Trennung der Booster erfolgt dann etwa 2:33 Minuten nach dem Start. Danach werden die Booster umdrehen und wieder zum Startplatz zurückfliegen. Dieser Rückflug erfolgt leicht Zeitversetzt wodurch die Landung der beiden Booster nicht gleichzeitig erfolgt.

Währenddessen setzt die Rakete ihren Weg in den Erdorbit fort. Zunächst schaltet dann die Zentrale Stufe ab. Da die Stufe schon sehr schnell ist, viel schneller als bei einem Falcon 9 Start, wird sie auf der Hochseeplattform von SpaceX Landen.

Die Oberstufe fliegt mit dem Tesla zunächst in eine Erdumlaufbahn. Dort wird sie etwa 6 Stunden Verbleiben, bis sie wieder Zündet. Dabei wird sie den Tesla in einem Heliozentrischen Orbit bringen, den ihn zwischen 380 – 450 Millionen km von der Erde wegführt.

Sollte dies so alles erfolgreich sein, wäre das ein riesiger Erfolg für SpaceX. Doch selbst wenn nicht alles klappt, muss das nicht schlimm sein. Für Elon Musk ist der Start bereits ein Erfolg, wenn es die Rakete soweit vom Startplatz weg schafft um ihn nicht zu beschädigen. Elon Musk sagte bereits mehrfach das er mit einer 50/50 Chance rechnet, dass alles gut geht

Was macht die Falcon Heavy so besonders?

Die Falcon Heavy ist ab heute Abend die aktive Rakete mit der höchsten Nutzlast weltweit. In der Geschichte wird sie lediglich von der Saturn 5 übertroffen. Auch die Russische N1 Rakete war stärker, jedoch nie erfolgreich.

Durch die Wiederverwendung der Booster, sowie der Zentralstufe kann SpaceX die Falcon Heavy zu einem Preis anbieten, der alle aktuellen größeren Raketen schlägt. Die heutige Falcon Heavy besteht noch aus Stufen die lediglich zweimal wiederverwendet werden können. In Zukunft sollen alle Erststufen bei SpaceX in der Version Block 5 kommen. Block 5 soll sich bis zu 100 Mal wiederverwenden lassen und dabei nur alle 10 Flüge eine größere Wartung benötigen.
Die erste Block 5 Stufe wurde bereits hergestellt und soll demnächst zuerst in einer Falcon 9 eingesetzt werden.
Die Nutzlast ist zudem zwei bis dreimal größer als bei den aktuell größten Raketen. Das ganze macht die Falcon Heavy auch ökonomisch zu einem Gewinner.

Mars Mission Insight der NASA geht in den Endspurt

Insight ist ein Stationärer Mars Lander unter der Leitung der US-Amerikanischen Raumfahrtagentur NASA. Die Marssonde soll im Mai 2018 zum Mars starten. Der Hersteller des Raumfahrzeugs ist Lockheed Martin Space Systems.

Insght Marslander auf dem Mars

Künstlerische Darstellung Insight auf dem Mars Quelle: NASA/JPL

Beteiligt sind Wissenschaftler aus Frankreich, Deutschland, Österreich, Belgien, Kanada, Japan, Spanien, Großbritannien, Vereinigte Staaten von Amerika und der Schweiz.

Nachdem Insight bereits 2016 starten sollte, soll der Insight Lander jetzt ab dem 5. Mai 2018 auf einer Atlas 5 starten, damals war eine Beschädigung an der Vakuumkammer von SEIS in einem Test festgestellt worden und eine Rechtzeitige Reparatur nicht mehr möglich. Da bei einem Start zum Mars die Planetenkonstellation zwischen Erde und Mars stimmen muss, öffnet sich das Startfenster nur etwa alle 26 Monate.

Der Marlslander Insight ist mit 2 wissenschaftlichen Instrumenten ausgestattet. Zusätzlich wird das Kommunikationssystem für ein wissenschaftliches Experiment genutzt.

Das Seismic Experiment for Interior Structure (SEIS) ist ein Instrument, welches sehr genaue Messungen, über die seismologischen Aktivitäten auf dem Mars durchführen soll. Dabei können durch die gemessenen Wellen von Erdbeben, Asteroideneinschläge und aus anderen Quellen Rückschlüsse auf das Innere des Planeten Mars gezogen werden. Es sollen erstmals mit den Daten von SEIS etwas über den Aufbau von Kruste, Mantel und Kern vom Mars gesagt werden können.

Das zweite Instrument ist Heat Flow and Physical Properties Package (HP3). Dieses Instrument soll mit einer Wärmestromsonde 5 Meter unter die Marsoberfläche bohren. Damit soll der Wärmestrom aus den Planetenkern gemessen werden. Dabei interressiert vor allem ob der Mars einen flüssigen Kern besitzt. Außerdem währe es die erste Bohrung auf dem Mars mit einer tiefe von einigen Metern. Diese Technologie könnte später genutzt werden um nach Unterirdischem Leben zu suchen. Das Instrument wurde vom deutschen Zentrum für Luft und Raumfahrt (DLR) beigesteuert.

Als Drittes wird Rotation and Interior Structure Experiment (RISE) durchgeführt. Dabei soll mithilfe des Kommunikationssystems die Rotation des Mars mit einer Genauigkeit von 2 cm vermessen werden. Mithilfe neuer Daten und ältere aus dem Viking Programm und dem Mars Pathfinder Programm soll es möglich sein die Größe des Planetenkerns deutlich genauer zu berechnen.

Marsmission werden CubeSats eingesetzt

Erstmals wäherend einer Marsmission werden CubeSats eingesetzt Quelle: NASA

Beim Start von Insight werden erstmals zwei Cubesats 6U mit den maßen 30*20*10cm auf einer interplanetarischen Mission eingesetzt. Diese Cubesats werden die Kommunikation in der Landephase unterstützen.

Die Landestelle von Insight auf dem Mars

Die Landestelle von Insight auf dem Mars Quelle: NASA

Im März 2017 hat das JPL aus vorher vier untersuchte Landestellen eine Ausgewählt. Die Landung soll im Westen des Elysium Planitia bei 4.5°N 135.9°E erfolgen. Dort sind alle Bedingungen für den Lander erfüllt. Dieses Gebiet auf dem Mars liegt relativ tief was eine Landung erleichtert. Außerdem soll es auf der Oberfläche nur wenige Unebenheiten geben, welche den Lander, bei seiner Landung gefährlich werden können. Der Lander kann hier in Äquatornähe optimal mit seinen auf Solarstrom basierende Stromversorgung mindestens ein Marsjahr arbeiten. Ein Marsjahr entspricht 687 Erd-Tage.